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INTRODUCTION 

Engineers designing processing equipment for polymeric solutions and 
polymer melts have long based their procedures on the stress-deformation 
rate equations of Newtonian fluids, the only modification being the assump- 
tion of a variable viscosity. The elastic properties of real fluids, i.e., the 
memory of the fluid for its deformation history, have been considered to 
have no effect on any but oscillatory flows. While such design procedures 
will predict the correct pressure gradients for steady laminar shearing 
f l 0 ~ ~ , 2 9 9 ~  they are incapable of predicting the behavior of fluid polymer 
systems in more complex flow situations. For example, when a fluid flows 
into a tube, the entrance length required for the velocity profile to become 
fully developed is an order of magnitude larger for fluids having appreciable 
e la~t ic i ty2~e~~ than is predicted by only considering the nonlinear relation 
between the shear stress and deformation rate.3@ The various abnormal 
exit effects are also well k n o ~ n . ~ ~ ~ 2 ~ - - 3 ~ - 3 ~  In the special case of dilute 
solutions, fluid elasticity is responsible for reducing the pressure gradients 
required for ducted flow as much as an order of magnitude at  high Reynolds 
numbers,’0*62 an effect which has found a number of large-scale industrial 
applications. There are significant effects even in laminar shearing flows 
of polymer solutions and melts. For instance, when such a fluid flows 
between two coaxial cylinders, the fluid tends to climb up the inner 
c ~ l i n d e r ~ ~ , ~ ~  rather than being thrown out radially by the centrifugal force. 
Weissenberg has shown similar effects to exist in other geometries and 
was the first to offer a correct explanation for these phenomena. In a 
coaxial cylinder or rotating parallel plate geometry a tensile normal stress 
exists along the streamlines and tends to strangulate the fluid, causing it 
to move to the center or to climb up the inner cylinder. The significance of 
this normal stress effect to engineers is well illustrated by the “normal 
stress” pumps built by ReinerM and by Maxwell and Scalora.% 

A growing effort has been devoted to the measurement of normal stresses 
in laminar shearing flows and normal stresses as much as thirty times greater 
in magnitude than the concomitant shearing stresses have been found at 
high rates of  hear.'^,^^ This work has recently been where it 
has been shown that most of the available measurements have unfortunately 
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been restricted to deformation rates which are too low to be of much interest 
industrially. However, progress is being made in this direction and this 
paper will not be concerned with experimental techniques but with the 
theoretical prediction of the stresses arising in the flow of viscoelastic 
materials and the relationships between them. The purpose of this paper 
is to introduce a constitutive equation (relating deformation rates and 
their history to the stresses required to sustain such deformation) which 
may have application in engineering design involving polymeric materials, 
and to illustrate the use of this equation by solving a number of practical 
problems. 

METHODS OF FORMULATION OF CONSTITUTIVE EQUATIONS 
FOR VISCOELASTIC MATERIALS 

Rheological equations of state for viscoelastic media date back to the 
latter half of the nineteenth century. The results of early workers such as 
Boltzmann,' Maxwell,66 and Volterra'z are not valid for the large deforma- 
tions of interest in studies of the flow of polymeric melts and solutions. 
Thus, this work as well as the more recent body of literature in the area of 
"infinitesimal" or %near" viscoelasticity, which is of interest in connec- 
tion with the solution of problems of stress analysis of nearly rigid solids,',2,19 
is inapplicable to the problems being considered here. 

It was not until 1950 that a method of formulation of constitutive equa- 
tions, valid for large deformations, was clearly outlined. I n  that year, 
Oldroyd* pointed out that the form of any constitutive equations must 
be restricted by the requirement that the equations describe properties 
independent of the frame of reference and that such invariance properties 
could be obtained by considering a constitutive equation ''as defining the 
properties of an arbitrary element moving as part of the continuum." 
In order to consider such an element, one introduces a coordinate system 
E", which is fixed in and deforms with the medium. The constitutive equa- 
tion is then constructed by relating the components of the stress tensor in 
this convected coordinate system to a suitable kinematic tensor of that 
coordinate frame. Finally, the constitutive equation is transformed to a 
fixed space frame in which it may be solved simultaneously with the equa- 
tions of motion in analysis of real problems. No1138~39 has introduced an 
alternate method of formulation of constitutive equations, and a detailed 
comparison of these two methods is given elsewhere?6 

When a curvilinear system of coordinates (such as the convected frame 
considered here) is used, it becomes necessary to differentiate between 
tensors transforming by covariant and contravariant laws.*' Following 
OldroydlM stress will be taken to transform by a contravariant law. The 
fixed space components of the stress tensor 2' are related to the convected 
components xUB by 

(1) T i j  = c c (dz"/be") (bzj/bS)r"@ = (bz'/de")(bzi/d2)7?@ 
" B  
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The stress T at  a point in the medium at  time t is determined by the entire 
history of the deformation as well as its present state, within an arbitrary 
small neighborhood of the point. The history of this neighborhood may 
be specified by consideration of the variation in distance between two dif- 
ferentially separated points fixed in the medium. Taking the scalar 
product of the distance with itself gives 

where 

is known as the metric or fundamental tensor, which can be seen to be a 
second order covariant tensor. If a contravariant stress tensor is used, 
it must necessarily be related to a kinematic tensor obeying the same trans- 
formation law. Such a quantity is the conjugate metric tensor yp8 
defined by : 

The constitutive equation of a material isotropic in its initial or ground 
state is thus given by the functional relationship: 

which has fixed components: 
t 

T'j = (dxi/bc") (b2/dc@)f"B [y6yejJ)] (6) 
- m  

Equation (6) represents the most general form of constitutive equation for 
an isotopic continuous medium. 

Green and Rivlin15 point out that the functional appearing in eq. (6) 
may be expanded in a manner similar to that used in expansion of a func- 
tion in a Taylor series. From the theory of functionals:72 

TQB = s' . . . s' $"[t,tJi,. . . tlr, YQ6(tli>, . . . 'YzB(tlr> ldtli. . .dtlr (7) 

Both Green and Rivlin15 and No11 and C ~ l e m a n ~ v ~ ~  have developed theories 
of viscoelastic deformation based on equations similar to eqs. (6) and (7). 
Other very general formulations, though somewhat different in approach, 
have been published by Rivlin and Ericksen.GO 

Due to their complexity, these results are not readily usable to solve the 
problems of interest to the engineer, and simplifications must be made. 
Lodge21 and P ~ o ~ ~  introduced constitutive equations which are equivalent 
to expressing one term of an expansion similar to eq. (7). However, 
Lodge's result does not predict the observed dependence of the components 
of the stress tensor upon the deformation rate, while Pao's theory, which 
has been presented in incomplete form, still appears to be too complicated 

k = l  - m  - -m 
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to allow analytical solutions of any but the simplest problems. 01- 
d r o ~ d , ~ - * ~  N0ll,3~ and DeWitt’ have used an approach which, in some 
respects, is similar to that employed when deriving the operator equations 
of linear viscoelasticity2*m as the basis of constitutive equations. The 
results of DeWitt’s and Woll’s theories are not in agreement with experi- 
mental data.24 Oldroyd’s results are more promising. They are at 
least in qualitative agreement with experimental data and the number of 
parameters involved, while large, is not prohibitive. In  fact, several 
papers have appeared in the literature in which attempts to evaluate the 
parameters in several of Oldroyd’s equations have been made.29.30~42~43 
However, no complete determination of the parameters appears to have 
been. accomplished as yet as the amount of effort involved is very large 
indeed. Remarks similar to those made concerning the work of Oldroyd 
may be made about the recent papers of Walter~.?~ 

Thus, with the possible exception of Oldroyd’s and Walters’ work, there 
appear to be no constitutive equations general enough to explain the ob- 
served behavior of polymeric systems undergoing large deformations but 
still simple enough to provide a basis for engineering design procedures. 
It is the purpose of this paper to derive such a constitutive equation, to 
compare it with available experimental data and to observe some of its 
implications. 

DEVELOPMENT OF EQUATION 

Let us first consider the qualitative characteristics of the flow of a con- 
centrated polymer solution or polymeric melt on a molecular scale. A 
molecular model has been developed by Lodge21*22 and Yarnamot~’~ which 
is a modification of the kinetic theory of rubber elasticity.12J0 These 
authors consider a flowing polymer system to consist of long chain molecules 
connected in a continuously changing network structure by “interactions” 
between chains which involve intermolecular forces. If the interchain 
junctions were permanent and intermolecular forces between the chains 
could be neglected, then one obtains the perfectly elastic rubber of the 
kinetic theory. The convected components of the constitutive equation 
of this material are :21 

na@ = - ay a@ - G[.,,”@ - @] 

This equation is found to be in excellent agreement with the stress-deforma- 
tion behavior of crosslinked rubbers swollen with organic solvpnts.7° It 
is found that the higher the degree of swelling, the smaller the deviations 
from eq. (8), a fact which is attributed (e.g., ref. 70) to the effect of the sol- 
vent in decreasing the moleeular forces between chains in regions between 
the junctions. 

Lodge and Yamamoto have suggested that a modification of a theory 
introduced by Tobolsky and co-workers@‘ may be applied to the flow of 
concentrated polymeric materials. The original work of Tobolsky et al. 
was concerned with stress relaxation in materials subjected to infinitesimal 
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deformations and was based on the assumption that the stress was propor- 
tional to the concentration of interchain junctions still present and which 
originally existed in the stressed state. These authors show that such an 
approach leads to Maxwell's equation.1*2*55 In the flow of high molecular 
weight polymeric materials, there is a continuous breakdown and reforma- 
tion of interchain junctions, and a similar assumption may be made con- 
cerning the stress. At finite deformation rates, this constitutive equation 
must be formulated in a convected coordinate system. It should be noted 
that Lodge21*22 and YamamotoT8 have derived constitutive equations on 
this basis. However, Lodge's result only predicts the observed behavior 
in the limiting case of low shear rates and Yamamoto's constitutive equa- 
tion appears to be too complex to be of engineering interest at present. 

From the above consideration of the structure of flowing concentrated 
polymeric materials, it may be suggested that for large deformation rates: 

DdaB/Dt  = -G(DraB/Dt) - r raB/h  (8) 

where 

and h the relaxation time is a function of the invariants of the stress 
matrix. The dependence of h upon the stress corresponds to a nonlinear 
junction breakdown process. 

Equation (8) may only be expected to apply to those polymeric systems 
which, under conditions of large deformations, behave similarly to swollen 
crosslinked rubber. Thus, this constitutive equation should be most 
applicable to nonpolar systems. However, under some conditions polar 
molecules might be expected to approach similar behavior hence these 
equations may be applied to such systems as approximations under pos- 
sibly restricted conditions. In any case the above discussion should be 
considered to indicate only generally (and not quantitatively) the range of 
applicability of the present development. 

Equation (8) is the representation of the constitutive equation in a 
coordinate system fixed in and deforming with the medium. In order to 
be useful, the constitutive equation must be transformed to the same co- 
ordinates in which rheological phenomena are observed, a fixed space 
coordinate system. The components of eq. (8) in a curvilinear fixed space 
frame are (see Appendix A) : 

6 ~ " ' / 6 t  = 2G8' - r'"/h (9) 

where : 



1872 J. L. WHITE AND A. B. METZNER 

For a fixed rectangular coordinate system, eqs. (10) become: 

Cp = 1/2(dv;/dxj + dVj/dZi) 
T f 3  - - - &'J + 

6r'i1/6t = DT'"/Dt - (bV'/d~")r'"j - (dV'/dx")~'~" 

Equation (9) is similar in form to that given by DeWitt? However, I)e- 
Witt's time derivative of thk stress tensor is somewhat different from that 
of eq. (1Oc) and he assumes the relaxation time to be a constant. 

Equation (9) may be rewritten in a more convenient form to show its 
relationship to a purely viscous liquid : 

= 2& - (p/G)(6r1"/6t) 
where 

p = XG 

It. may be seen that the constitutive equation is identical to that of a 
purely viscous non-Newtonian fluid except for LL term involving the "con- 
vected" derivative of the stress tensor. It is this term which account,s 
for the various normal stress (viscoelastic) effects. 

In the remainder of the paper, contravariant superscripts for fixed space 
components will be changed to subscripts for reasons of clarity. 

ANALYSIS OF LAMINAR SHEARING FLOWS 

Perhaps the most important of all hydrodynamic problems which arise 
in industrial applications of polymeric systems is that of laminar shearing 
flows. Fortunately, this is also the simplest hydrodynamic problem to 
solve and a large fraction of all meaningful experimental data available 
to date have been taken on instruments measuring this type of flow. 
Laminar shearing flows are defined in terms of a tixed orthogonal system of 
coordinates (e.g., rectangular, cylindrical, or spherical), where the fluid 
flows steadily in one coordinate direction and its velocity or angular velocity 
as in Couette flow, varies with distance along a second coordinate. The 
direction of flow is arbitrarily designated as 1, and the coordinate along 
which the velocity varies is designated as 2. A more formal kinematic 
definition of laminar shearing flow is : 

D1 = I( -DyQ8/Dt [ I  = 2 ( 1  dt3 1 1  (124 
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where the matrices DN in fixed space coordinates may be obtained from the 
formula : 

( D N + I ) i j  = (D/Dt)@N)ij - @.v)imvj, .rn - ( D ~ ) m j V i . m  (14b) 

The quantities DN are contravariant analogs of what Nollae has called 
Rivlin-Ericksen tensors and are discussed elsem here.76 A shi lar  definition 
of laminar shearing flow is given by Ericksen." Laminar $hearing flows 
include (a) simple shearing flow between parallel planes, (b) Poiseuille flow 
in a tube, (c) Couette flow between coaxial cylinders, (d) shearing flow be- 
tween a cone and plate, and (e) torsional deformation between parallel 
disks. 

Introducing eq. (12) into eqs. (11) and (lob) gives: 

The stress tensor may be resolved into an isotropic pressure and devia- 
toric stress tensor.& 

where 
o =  - p I + P  

p = z 

Comparing eq. (15a) with eqs. (15b) and (15c), one obtains: 

p = a -'/3 ( p / G ) d '  

and : 

721 72277.a = - 0 P O  
731 732 733 P O P  

711 719 713 1 1 p 0 0 1 
rr 0 

( - 2/3) (~/G)712r 0 
0 (- 2/3) ( d G ) 7 1 2 r  

Subtracting rZ from all of the components of the diagonal of llrull (since 
in real problems one usually treats the difference between stresses rather 
than their absolute values and because this also eliminates arbitrary hy- 
drostatic pressures from consideration) one obtains: 

?11-722 712 713 pll-pn 712 713 

731 732 733-722 731 732 p 3 3 - p H  

0 0 0  
Since, in the development, the viscosity was considered to be a 

variable, it is a function of the invariants of the stress tensor. The 
function did not need to be specified, and hence any observed behavior 
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may be accommodated within the framework of the present theory. The 
same is not true of the normal stress terms, since G was assumed to be a 
constant. Equation (17) shows that a plot of the shear stress vs. the yuan- 
tity (Pll - P22)/r12 should be linear. Further, the normal stresses in the 
directions perpendicular to the direction of flow (Pz2 and P33) are 
predicted as being equal in magnitude. These results are similar to 
the stress-strain behavior in simple shear of an elastic solid following 
eq. (8) as its constitutive equation and therefore to the behavior of 
highly swollen crosslinked r ~ b b e r . ~ ~ @ s ~ ~ J ~  In  the theory of large elastic 
deformations, the quantity (Pll - P 2 ~ ) / ~ 1 2  is equal to the amount of shear- 
ing strain and the corresponding quantity in a viscoelastic fluid, being like- 
wise linear in the shearing stress, could be termed a “recoverable” shearing 
strain. This suggestion was first made by WeissenbergI4 and has received 
some verification frqm recoil measurements by PollettK1 and Philippoff .a 
Denoting (Pll - P22)/712 by s, eq. (17) may be rewritten: 

P11- P z z  712 713 (G/2)s2 (G/2)s  0 
7 2 1  0 723 1 = 1 (G/s2) 0 0 1 I 731 732 P 3 3  - Pn 0 0 0  

Weis~enberg,~~J~ M o ~ n e y , ~ ~  and Philippoff 46 have discussed theories of 
viscoelastic flow based on an analogy to the finite deformation of an elastic 
solid. These theories, which are only applicable to laminar shearing flows, 
yield answers identical to  eqs. (17) and (18). The constitutive equation 
derived in this paper (eqs. 9-11) is far more general as its use is not re- 
stricted to laminar shearing flows alone but may also be applied to complex 
hydrodynamic problems. However, its simplification to relationships which 
are already well known in the special case of laminar shearing flows is very 
reassuring. 

In  order to apply the above to any engineering design problem, it is 
necessary that all of the significant parameters be easily obtainable from ex- 
perimental data. All of the parameters of eq. (11) may be obtained from 
two experiments involving laminar shearing flow. First, shear stress- 
shear rate data may be obtained to evaluate the parameter p ( r )  or, equiva- 
lently, p as a function of the invariants of the stress or rate of deformation 
tensor. These data may be obtained from standard capillary tube or ro- 
tational viscometer m e t h o d ~ . ~ ~ . 2 ~  Secondly, normal stress data are ob- 
tained using techniques of normal stress measurement which have also 
been reviewed el~ewhere.~*J~ 

Evaluation of Equation : Comparison with Experimental Data 
Since data are not available to evaluate eq. (11) in its complete form, 

comparisons with experimental results must be limited to the steady state 
special cases of laminar shearing flows, though it may be noted that Tobol- 
sky and Eyring7 have correlated stress relaxation and creep data with a 
onedimensional form of eq. (9). Because the viscosity can be varied at 
will to fit experimental measurements, no test of the theory is possible using 
measurements of the shear stress alone, The test of the theory therefore 
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lies in the predicted relationships between the normal stresses and between 
these and either the shearing stress or the shear rate. 

Robertse1 and Pilpe149~50 have carried out extensive measurements to de- 
termine relative values of rlI1 722, and 733 with a modified Weissenberg 
rheogoniometer. While it is not obvious that all possible sources of experi- 
mental aberration were ~onsidered,2~-77 within experimental error rB and 
733 were always observed to be identical as predicted by eq. (17). More 
recently, Philippoff 47 has introduced the use of an instrument for measuring 
flow birefringence in the 2-3 plane. He records that ‘‘for all polymer solu- 
tions studied, there was no ‘cross of isoclines’ even if the birefringence, 
An, in the 1,2 plane, which is usually observed in the flow birefringence in- 
strument, was as great as loo0 x units.” Recently Coleman and 
Toupin7 have objected to this experiment, claiming a lack of rigor in 
Philippoff’s t h e ~ r y ~ ~ - ~ ’  of birefringence in fluid polymeric systems. How- 
ever, agreement of the birefringence data45 with results obtained using other 
instruments tends to support the validity of Philippoff’s premises. The 
equality of rZ2 and 733 is also supported by recent studies of Kotaka et al.ls 

A dissenting opinion to these conclusions has recently been voiced by 
Lodge,z3 who finds r z 2  > 738. It is of interest to note that one of the solu- 
tions investigated by Lodge was polyisobutylene in decalin, a solution simi- 
lar to some which had been used previously by Roberts and by Philippoff 
to develop their conclusions about the equality of rZ2 and 733. As only a 
summary of Lodge’s paper has appeared which does not give a detailed 
discussion of his experimental procedure or any data, it is difficult to pin- 
point the reasons for these opposing observations. Experiments by 
MarkovitzZ4 on a coaxial cylinder instrument also have led him to question 
the equality of 7 2 2  and 733’  as have more recent experiments* comparing data 
on cone-plate and parallel plate instruments. 

In summary, most existing experimental measurements point to either 
the predicted equality or to a near equality of rZ2 and 733. Thus, while this 
test of theory is inconclusive because of insufficient data, the majority of 
the available results are not in disagreement with the predictions. 

Accepting, at least for the present, the predicted equality of PZ2 and P33 
one further measurement of either a normal stress or of a single difference 
between two normal stresses suffices to define all three. This is a conse- 
quence of our definition of isotropic pressure, eq. (15~)’ which requires that 
the sum of P11, P22, and P33 be zero. A number of authors have evaluated 
PI1 - P22 but except for the work of Brodnyan, Gaskins, and Philippoff on 
the polyisobutylene-decalin system, no extensive data have been taken on 
any high polymer system. While their direct force (rheogoniometric) meas- 
urements scatter considerably, their birefringence measurements do not, and 
in four out of seven solutions, support the constancy of G over at  least two de- 
cades of shear rate. They note that known impurities in two of the other 
solutions may cause the variability of G .  Similar measurements are availa- 
ble on solutions of polystyrene in decalin and methylcellulose in water,18 
ethyl-cellulose in cyclohexanone and CMC in waterT5 crepe rubber in tol- 
~ e n e , ~ ~  and nitrocellulose in butyl but over more modest ranges 
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of shear rate and at low levels of the shear rate. All but the cellulosic 
solutions support the suggested constancy of G or linearity between (PI1  - 

Recently, data at very high shear rates (Ti X 103-105 set.-') have become 
a~ailable1~.3~*32 in polymeric solutions. I n  this case, the predicted con- 
stancy of G is not observed in a 5% polyisobutylene solution but data on 
CMC follow the predicted dependence over a wide range of shear rates. 
These high shear rate results are somewhat surprising when compared with 
data in the lower ranges of shear rate which were discussed in the previous 
paragraph, and further studies will be required. 

While birefringence datag on a 
polyethylene melt at low shear rates show a constant value of G no other 
measurements appear to be available which are subject to rigorous inter- 
pretation. 

In  conclusion, nonpolar solutions appear to follow the predictions of 
eqs. (16-18) closely, over the wide ranges of shear rate investigated, pro- 
vided the solutions are dilute or of modest concentration (viscosities below 
about 1 poise). For higher concentrations and at higher shear rates, the 
picture requires further clarification.* For polar systems (in particular 
solutions of cellulosic polymers), the constitutive equation fails at low shear 
rates. The recoverable shear (PI1 - P 2 2 ) / 7 1 2  increases at a smaller rate 
than 712, i.e., in order to  correlate these data, G must be an increasing func- 
tion of shear rate. However, data a t  higher shear rates (ca. lo4 see.-') 
indicate that eq. (17) mGy be a good representation of these systems. 
While the available data for polymeric melts are inadequate to  be conclusive 
they presently support the predicted constancy of G. 

There is a great need for reliable experimental data on a larger number of 
polymeric systems. From an engineering viewpoint, especially important 
are data a t  high shear rates and on molten polymers. Until such results 
are available, few conclusive statements are possible about the applicability 
of the constitutive equation derived in this work, but the presently available 
results are quite encouraging. 

P 2 2 ) / 7 1 2  and 712. 

Few data exist for molten polymers. 

APPLICATION OF CONSTITUTIVE EQUATION. ANALYSIS OF 
FLOW PROBLEMS 

1. Laminar Flow in a Tube (Isothermal conditions) 

Denoting the axial coordinate by x or 1, the radial coordinate by r or 2 
and the tangential direction by 6 or 3, the equations of motion55 become: 

0 = -bdp/bz + (l/r) b/br ( r  712) 

0 = - - p / b r  + W22/br + (P22 - P d / r  

(194 

(19b) 
* After the present manuscript waa completed, another study by Kotaka et al. 

(Rheobgicu Actu, 2, 179 (1962)) was published. High molecular weight polystyrene 
solutions in toluene generally support the proposed constancy of G at modest concentra- 
tions, in agreement with the above discuesion. Their low molecular weight polystyrene 
solutions do not exhibit a constant value of G. 
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Integrating both equations with respect to the radius r yields: 

7-12 = (r/2)(bP/dq (ma) 
(Bb) p ( r ,  2) = ~ ( 0 ,  z) + P22 + J; [Pn - Pal d n r  

From eq. (%a) the velocity distribution and flow rate may be obtained if a 
relationship between the shear stress and shear rate is assumed. Further- 
more, the general scale-up methods derived for purely viscous non-New- 
tonian  material^^^,^ may be used for viscoelastic fluids. Equation (2Ob) 
may be used to calculate the variation df normal stresses with radial posi- 
tion : 

(21a) n1 = - p  + PI1 = -p(O) + Pll-PZ- K [P , -P , ]  dlnr 

7 2 2  = - p  + Pn = -p(O) - [Pzz-P~~I dlnr (21b) 
From eqs. (17), (204 and (21) : 

7-11 = -do) 2~~12/G = -P(O) (272/@(r/R)2 (224 

(22b) 

or (33): 

7 1 1  = -p(O) + 2(K’2/G)(8V/D)2”’(r/R)2 

722 = --p(O) 

The force per unit area measured on a pressure gage at  the wall or with the 
static pressure taps of a pitot tube will be equal to ( - T B ) ,  the radially 
directed stress exerted by the fluid. Equation (22c) shows that this will 
just be equal to the isotropic pressure at the centerlie of the tube p(O), 
for all fluids for which Pn - PS = 0. However, an impact opening of a 
pitot tube would measure, after subtraction of the kinetic energy term, the 
longitudinal stress ( - 7 ~ ) .  At the centerline, where Pl l ,  Pa, and Pa are 
all zero because the fluid deformation is zero, this would just be equal to 
p ( 0 ) .  However, a t  all other radial positions, this instrument would not 
measure the centerline pressure, and the deviation of the measurement from 
p ( 0 )  will increase as the square of the distance from the ceQterline and, a t  
given radial position, with the square of the pressure gradient or 7,,,. 

2. Dynamics of a Viscoelastic Jet 

When a fluid stream leaves the end of a horizontal tube, the 
velocity profile and the normal stresses decay until, sufficiently for 
downstream, the jet approaches a constant diameter in the absence of 
gravitational effects. This probIem has received some attention in the 
recent literature. 1 4 ~ 1 7 2 9 - a 2 9 3 6  The extrudate diameter may be obtained by 
means of a macroscopic momentum balance between the end of the tube 
and a section across the jet taken after it has reached a constant diameter, 
as follows: 

J ,  2~ 7-31 dr = $2 2~ w2 dr - p(?rd7/4)$ (23) 
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Eliminating the jet velocity from eq. (23) by means of the continuity equa- 
tion and solving for (D/d j )  gives 

(Dldjj2 = 2 So' (u/J')' ( r /R)  d ( r /R)  - (~/PJ'') So' ( r / R )  711 d (r/R) 
(24) 

If the fluid considered were Newtonian, then it would be expected that the 
final term on the right hand side of eq. (24) would be zero and the first 
integral would be equal to "3 numerically. Experiments on aqueous gly- 
cerine and corn syrup s o l ~ t i o n s ~ ~ ~ ~ ~ ~ ~ ~  have shown that the left hand side of 
eq. (24) is somewhat smaller than 4/3 (i.e., an abnormally large jet is found) 
at Reynolds numbers below 150. At higher Reynolds numbers the 4/3 value 
is obtained. Experiments with purely viscous nonNewtonian fluids give 
similar results.32 First considering the situation at Reynolds numbers 
greater than 150, eq. (22a) may be substituted into eq. (24) to give 

The last term in eq. (25) is the ratio of the elastic to the inertial forces, 
the quantity in brackets being the ratio of the elastic to twice the viscous 
forces and is equivalent to half of Weissenberg's recoverable shear parameter 
evaluated at  the wall of the tube. Thus, the larger the value of the re- 
coverable shear at the tube wall, the greater the resulting expansion. 

The shear stress-shear rate relationship, hence the velocity term appear- 
ing in eq. (25) may be closely approximated by a simple empirical equation. 
One such simple (two-parameter) relation which is usually found to work 
well in problems dealing with flow through tubes is the power law*.%.29 
En this case the integral in eq. (25) is equal to (372 -I- 1)/(2n + 1). 

At lower Reynolds numbers (i.e., with molten polymers) the firat term 
on the right of eq. (25) may be obtained using the available results of meas- 
urements on purely viscous While this serves to define the term 
correctly in principle, it is not yet obvious whether the correction is of 
significance, as no extensive data on viscoelastic fluids are yet available in 
this region. 

3. Normal Stresses in Screw Extruders 

Another industrially important example of flow of a molten polymer is 
between the barrel and rotating screw of an extruder. In recent years 
attempts have been made to analyze the hydrodynamics of screw extrusion 

* The reasons for its comparative succe88 have frequently been stated but still do not 
appear t o  be generally appreciated, possibly in view of the fact that it must always break 
down at low shear rates. I n  the special caae of flow through tubes, when one integratea 
to obtain the total flow i t  is the product of velocity and radial position which a p p e m  in 
the integrand. Since this product approaches zero near the centerline (where the shear 
rates approach zero) the breakdown of the power law or use of an incorrect velocity in this 
region is inconsequential. This is the only reason for the utility of the power law but it 
fortunately embraces the majority of problems of practical interest. Obviously its 
attempted use in other geometries (e.g., flow through annuli or between flat plates) 
where this fortuitous pairing of the velocity with a term approaching zero a t  low shear 
rates does not exist, would be abortive. Some of the resulting ludicrous predictiom 
have been reviewed eIsewhere.*s 
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and to derive quantitative design procedures (far a recent review, see 
Squirese4). Most of these analyses have been based upon solutions of the 
Navier-Stokes equations for Newtonian fluids. Indeed the complexity of 
the geometry does not allow for very exact analyses much more difficult 
than this. 

One very simple geometry which has been suggested as an approximation 
of the actual operation consists of two plates separated by a distance h, 
the upper plate moving parallel to the lower plate with a velocity U .  The 
melt is assumed to flow between the plates against a pressure gradient 
bp/bz at an angle 4 to the direction of the upper plate. 

The equations of motion become, for steady flow in this geometry: 

with boundary conditions : 

v,(h) = U cos 4 (274 

V p ( O )  = 0 (27b) 
In order to calculate the velocity distribution and flow rate in the chan- 

nel it is necessary to relate the shear stress to the velocity gradient. In this 
geometry use of the power law would not lead to a good approximation and 
other empirical formulae, capable of predicting tk behavior of fluids at 
low shear rates as well as at higher levels, must be employed. For pur- 
poses of clarity in illustration, however, the simplest possible choice, that 
of a constant viscosity, will be made. This choice also represents the behav- 
ior of real systems at low shear rates. Since the detailed calculations of 
the velocity profiles are summarized elsewhere64 only the results, needed 
subsequently for calculation of the normal stresses, need be given. They 
are : 

v = ( Y ~ C O S  4)/h + (1/2r) ( ~ P / ~ z ) ( Y '  - yh) 

Q = Jt vwdy = hwUc0~+/2 - (wh3/l2p)/bp/bz 

= Ucos4[3(~/h)~ - 2(y/hl - 68[(~/h)' - (y/h)l 

(28) 

(29) 
Or, in terms of the average velocity fl: 

(301 

Q = ijwh (31) 

(32) 
711 = - p* + 2(p2/G) [(Lrcos+/h)(6y/h - 2) - 6(fl/h)(2y/h((2y/h) - l)]' 

(33) 

and 

From eqs. (15) and (301, the normal stresses are given by: 

7 2 2  = 733 = -p* 

where p* denotes the isotropic pressure at y*, the position in the channel at 
which the melt has a zero velocity gradient. 
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The isotropic pressure p @  = - l / 3 ( 7 1 1  4- TB + 733)) is thus seen to be a 
function of the position parameter ylh.  Therefore the density of the fluid 
must, in principle, also vary with radial position in an extruder. This 
could obviously be of great significance near transition points or in precise 
calculations which allodr for internal heat generation by viscous forces and 
the heat consumption due to volumetric expansion of the polymer.6g Since 
too few data are available to enable reliable estimates of the modulus G at 
the shear rates of interest, it is not yet possible to state conclusively 
whether these effects are likely to be of major significance in molten poly- 
mers or not. Obviously there is 8 need for experimental data from which 
the elastic stresses may be calculated. 

4. HelicalFlow 
Another hydrodynamic problem related to screw extrusion is flow be- 

tween two rotating coaxial cylinders in the presence of an axial pressure 
gradient. This kinematic situation, known as helical flow, thus consists 
of Couette flow superimposed upon flow through an annulus. Helical 
flow of viscoelastic fluids was first investigated by RivlinS9 and, more re- 
cently, interesting discussions were given by Coleman and NoLs Denoting 
the axial direction by 1 ,  the radial direction by 2 and the angular direction 
by 3, the kinematics of helical flow may be specified by the D tensors 

0 
- r(dw/dr) 

-r(dw/dr) 0 

2 (dvi/dr) 0 2r (dvl/dr) / (dw/dr) 
DZ = - 0 0 1 2r (;vl/dr) (dwldr) 0 2 (r dw/dr)2 

(34) 

(35) 

D, = 0 N > 2  (36) 

The stress tensor may be easily calcdated from eqs. ( 1 0 - 1 1 )  to be 

711 712 713 27n2/G 7 1 2  2712723/PG 

2712732/@ 7 2 3  272a2/G 

It is interesting to note that there is a shear stress 713 caused by the 
olastic properties of the fluid which is not present in helical flow of a 
Newtonian fluid. 

The three components of the equations of motion become: 

prw2 = -aa/& + wB/br + - 7 3 / r  (3W 
(38b) 
(38C) 

0 = - ( l / r2 )  (a/&) (r2723) 
o = -aa/az + (i/r)(a/&)(rT12) 

To solve this problem, the following boundary conditions are applied 

211 ( R )  = vi ( K  R)  = 0 
v3 (R)  = 0; v3 (KR) = KRQ 
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If a relationship between the shear stress and shear rate is known, the 
force equilibrium equations may be solved directly for the velocity profiles. 
It should be noted, however, that since the viscosity, ,which is a function of 
the invariants of the stress tensor, no longer varies radially with only 
rI2 or 723. Therefore, the solutions already available for annular flow, 
which are based on simple empirical models for laminar shearing flows 
(such as the power law) will no longer suffice for calculating of velocity 
profiles and flow rates.* 

The difference between the normal stresses perpepdicular to the walls 
of the inner and outer cylinders may be calculated. Neglecting centrifugal 
forces, one obtains 

( r 2 2 ) R  - (w)KR = S2 ( ( 7 ’ 3 5  - ~’22)/r)dr (39) 

= JKE 2r223dr/Gr (40) 

(41 

From eq. (38b), it follows that 

( ~ 2 2 ) ~  - (TZZ)KR = Sk; [2(723)R2R4/Gr5]dr 

A similar result may be derived for the other independent normal stress 
Again, an appreciable radial variation in the isotropic pressure term rll. 

is possible in molten polymers or other highly elastic fluids. 

5. Analysis of the Normal Stress Pump 

A fifth problem of interest to engineers is that of the forces developed in 
the steady shearing flow of a viscoelastie fluid between two parallel rotating 
disks as in a centripetal pumpt.26*74 The usual notation convention is 
introduced: The direction of flow (is?., the angular direction) is denoted 
1, the radial direction 3, and the directioii perpendicular to the disks by 2 .  
The three components of the equations of motion55 become: 

- pv12/r = - d p / b r  + bPa3/br + (Z’33-Z’ll)/r 

0 = b p / &  + bPzz/bz 

(42a) 

(42b) 

0 = dr,2/b2 (424 

(43) 

The force perpeiidicular to the plates is: 

F = - S ” 2  ~rr22dr 

* The work on simple annular flow problems is comprehensively reviewed by Fredrick- 
son and BirdI3 and Metzner.2s 

t The equations presented in this section describe the stresses developed in a centri- 
petal or “normal stress” pump only under the limiting condition of no throughput. As 
the pressures developed under this condition represent the maximum available, they are 
of considerable interest, however. A similar phenomenon is found when rubber rods 
are twisted, experiments having shown that an axial tension develops which tends to 
elongate the rod.66 This latter observation is known aa the Poynting effect. 
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where from eq. (42a) it follows that (neglecting centrifugal forces) : 

m ( r )  = - A r )  + P2dr) 

= Pn - P a  + fi (Pll-P33)d 1 n r 

F =  - s,” 2n-r(P~rP33 + s,’ [ P I I - P ~ ~ ] ~  In r )  dr 

(44 ) 

(45) 

F = - 2n-r si (2m2/G)d In r dr (46) 

Combining eqs. (43) and (44), one obtains: 

Introducing eq. (17) yields: 

In order to integrate eq. (46) it is necessary to relate the shearing stress 
TIZ to the radius of the disc. To do this one must assume a relation be- 
tween the shear stress and the shear rate. In this geometry the ‘(power 
law” may be written:* 

TI2 = Krn = K ( T ~ / Z ~  

F / r a 2  = [K2 / (n  + ~)G](w/Z)~” = [Pii-PzzIa/(2n + 2) 

(47) 
Substitution of eq. (47) into eq. (46) yields: 

(48) 
Equation (48) gives the force F which must be applied to the plates of 

radius a in order to keep them separated by the desired distance 1. 
If this device is to be used as a (‘screwless extruder” or centripetal pump 

by connecting a small die of diameter D and equivalent length L to the 
center of one of the disks, an interesting problem which arises is that of 
determining the total volumetric pumping rate Q through the die. For 
this purpose one is not interested in the average force applied (eq. 48) but 
rather the pressure at the entry to the tube. Since the tube or die diameter 
is usually very small compared to that of the disks one may obtain this 
pressure (-722) by setting the upper limit of integration on eq. (44) to 
zero. Again, introducing eq. (17) and the power law and integrating, one 
obtains : 

( - T ~ z ) , .  = = (K2/Gn) (w/ Z)2n (49) 

Since this pressure is equal to the pressure drop through the die, using the 
well-known equation for flow of power law fluids through cylindrical 
tubes28.29.64 

DAP/4L = K[(3n+1/4n)(32&/1rD3)]” (50) 

(51) 

It may be noted that the predicted extrusion rate is proportional to the 
second power of the angular velocity of the rotor and inversely propor- 
tional to 12.  

gives : 
Q = ( rD3/8)  [n/(3n+ ~)](U~/”~(K/~G~)~’~(D/L)’’” 

* One may wish to  note that in this geometry, unlike the case of flow through round 
tubes, the power law is not good approximation as the region in which i t  breaks down 
contributes significantly to the overall problem. lhus ,  eq. (48) and the subsequent uw 
made of it are given here for illustrative purposes rather than for rigorous design usage. 
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Recently, Srivastava” has considered the additional effects of secondary 
flows between two rotating disks when the fluid obeys the constitutive 
equation of Reiner and R i ~ l i n . ~ ~ . ~ ~ . ~ ’  Unfortunately, as was first pointed 
out by RobertsB1 and is now generally acknowledged, the Reiner-Rivlin 
equations do not appear to depict properties found in real fluids. Srivas- 
tava’s work is still of interest in that it represents a first approximation and 
as such indicates a method of approach which may be used with better 
constitutive equations. 

CONCLUDING REMARKS 

A constitutive equation for a viscoelastic fluid, of sufficient simplicity 
to be used for engineering design, has been proposed and compared with 
experimental data. The comparison appears to be favorable for nonpolar 
hydrocarbon systems over a significant range of shear rates. In systems 
containing groups of high polarity, it is found that at  low shear rates (be- 
low about 100 set.-') the predicted equality of PZz and Pa3 is apparently 
fulfilled, but the normal stress difference (Pll--PZ2) increases at a smaller 
rate than predicted by eq. (16). However, at higher shear rates, limited 
data indicate that the behavior of such systems may be represented by the 
proposed constitutive equation. 

Under conditions of laminar shearing flow, the present constitutive 
equation is identical to Weissenberg’s theory of viscoelasticity. The 
results obtained in this analysis should be regarded as a verification and 
extension of Weissenberg’s theory. Rather than working by analogy to 
the behavior of an elastic solid, the analogy has been derived and the finaI 
form of the constitutive equation allows for extension to more complex 
problems. 

While normal stresses in most cases do not interfere with flow patterns 
in steady flows they may alter the distribution of forces and pressures 
significantly. In unsteady flows, such as in “exit effect” and “inlet effect” 
problems, in boundary layers, creeping flows, and in turbulent and oscil- 
latory flows, the effects of the viscoelastic properties are also significant. 
Recently SharmalB3 Leslielm and Rajeswari and Rathna52 have attacked 
unsteady flow problems, but results in this field are still at a very early 
stage of development. 

Nomenclature 
a = radius of disk 
D = diameter of tube 

DiV = ( 1  - DN-yUB/DtNII 
4 = jet diameter 
d’] 
F 
G = modulus of elasticity 
go 

D( ) / ~ t  = a ( )/at + v . v ( 

= ‘/z (V,Lgml + Vi,gb), the rate of strain tensor 
= vertical upward force in flow between rotating disks 

= metric tensor of fixed curvilinear coordinate system 
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= conjugate metric tensor of fixed curvilinear coordinate system 
= unit vector in a Cartesian fixed space coordinate system 
= power law constant 

= distance between (spacing of) parallel plates 
= exponent in power law 
= d b ( ~ d I / d  [ln(8V/D)l. 
- - ~ n ’ ~ 2 - n ’  p/Sn’- ‘K‘ 
= llPi511 = deviatoric stress tensor 
= isotropic pressure = - 
= volumetric flowrate 
= radius of tube (or of outer tube of an annulus) 
= radius 
= lineal distance (in Eq. 2 only) 
= (PII-Pzz) /T~z ,  the “recoverable shear” 
= time 
= local velocity in tube 
= plate velocity 
= LR 2xrudr/rR2, the mean or “bulk” velocity 
= j component of velocity vector 
= tangential velocity in torsional shearing flow betqeen parallel 

= TW/(8V/Djn’. 

tr 7 

plates 
Vi,,,,or V,A= covariant derivative of velocity in i direction with respect to 

m coordinate 
= Cartesian fixed space coordinates 
= curvilinear fixed space coordinates 
= distance measured normal to surface of plates 
= hydrostatic pressure 
= shear rate 
= metric tensor in convected coordinate system 
= conjugate metric tensor in convected coordinate system 

= Kronecker delta (equal to unity when i = j and equal to 
zero when i # j) 

= dummy variable used to denote time 
= tangential direction 
= ratio of inner to outer radii of an annulus 
= relaxation time 
= viscosity 
= convected coordina.tes 
= 3.14. . . . 
= convected components of stress tensor 

= density 
= stress tensor 
= fixed space components of stress tensor 
= T f j  + ffgfj 

= 1: a ( )/azcl + i 2  a( )/axz + 1 3  a( )/ax3 

= =a@+ crYa@ 
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= shearing stress at wall of tube 
= dummy variable used to denote time 
= relaxation function 
= angular velocity 

APPENDIX A 

Transformation of Constitutive Equation From a Convected To a Fixed 
Frame 

In this appendix, the transformation of eq. (8) to give eqs. (9) and (11) 
will be given in detail. Substitution of p = XG, into eq. (8) gives: 

- p ( ~ r u @ / ~ t )  - ( p / ~  ( D * ' ~ ~ / D ~ )  (A-1) = 

Relating eq. (A-1) to a fixed Cartesian frame : 

(be"/&') ( & @ / ~ X - ' ) T ' ' ~  = - a / D t  [(dea/bs')("@/bX-')6''] 

- (p/G)D/Dt[(be"/bz')(be@/dX-')~"~] (A-2) 

and : 
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changed; but eqs. (A-7) and (A-8) becomeln for a coordinate system 
having a metric tensor gu : 

(A-9) &j = i / * ( v , h m j  + v , u m )  
&pi/& = (D@/Dt) - T/',&/mj - T/T,f7/im (A-10) 

where V.f is a covariant derivative and gii is the conjugate metric tensor. 
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Synopsis 

The importance and characteristics of viscoelastic fluid behavior are briefly reviewed, 
as are theoretical predictions of the relationships between the stresses developed in such a 
fluid and its deformation rate and history. It is seen that most of the equations available 
for the prediction of these stresses (variously termed “constitutive equations” or “rheolog- 
ical equations of state”) either do not predict the properties of real materials correctly or, 
alternately, are of such overriding complexity that  they cannot be applied to the solution 
of any but the simplest real problems. A new constitutive equation in which all the 
significant parameters may be evaluated from only two sets of experiments is developed. 
Comparison with available experimental results, while not entirely conclusive, indicates 
that the equation may predict correctly the behavior of nonpolar solutions and polymeric 
melts and that  it may work well on polar systems in the range of high deformation rates, 
i.e., the region of primary industrial interest. Several problems of interest to the plastics 
industry are worked to illustrate the use of this constitutive equation. 

R6sum6 
L’importance et les caractkristiques du comportement d’un fluide viscodlastique sont 

brihvement passes en revue, ainsi que les pritvisions thkoriques des relations entre les 
tensions developpees dans un tel fluide et  sa vitesse de deformation et  son historique. 
I1 apparait que la plupart des equations de prevision de ces tensions (differemment d6- 
signees par “6quations de constitution” ou “Bquation rheologiques d’etat”) ne prevoient 
pas correctement les proprietks du matkriau reel ou alternativement sont d’une telle 
complexit6 qu’ils ne peuvent s’appliquer la solution d’aucun problbme trbs simple. 
On ddcril, une nouvelle equation de constitution dans laquelle tous les paramftres signif- 
icatifs peuvent &re 4valuC.s B partir de 2 series d’expbriences. Quoique la comparaison 
des resultats experimentaux ne soit pas entikrCrnent concluante, celle-ci contre &an- 
moins que l’equation peut prevoir correctement le compartment de solutions nonpolaires 
e t  de pllymeres fondus et que l’on peut travailler sur des systbmes polaires dans le cas de 
deformations BlevGes c.B.d. la region d’interet industriel. Plusieurs problhmes interes- 
sant l’industrie des plastiques sont Btudi6s afin d’illustrer l’usage de telles equations de 
constitution. 

Zusammenfassung 
E n  kurzer Uberblick iiber die Bedeutung und die Charakteristika des viskoelastischen 

Verhalteris fluider Medien wird gegeben, ebenso Cber die theoretischen Erwartungen fiir 
die Beziehung swischen den in einem solchen fluiden Medium auftretenden Spannungen 
und seiner Verforniungsgeschwindigkeit und Geschichte. Es seigt sich, dass die meisten 
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zur Vorherbestimmung dieser Spannungen vorhandenen Gleichungen (verschiedentlich 
nls “konstitutive Gleichungen” order “rheologische Zustandsgleichungen” bezeichnet) 
cntweder keine korkekten Angaben fur die Eigemchaften realer Stoffe liefern oder derar- 
tig komplexen Chnrakter haben, dam sie nur zur Ltisung der allereinfachsten realen 
Probleme verkendet werden konnen. Eine neue komtitutive Gleichung wird ent- 
wickelt, bei der alle signifikanten Parameter a m  nur zwei Versuchareihen ermittelt 
werden konnen. Ein Vergleich mit vorhandenen Versuchsergebniseen ist zwar nicht 
vollig achlulig, liisst aber erkennen, dam diese Gleichung daa Verhalten unpdtrer 
Losungen und Polymemhmehen richtig darstellen kann und dam sie bei polaren Syste- 
men im Bereich hoher Deformatiomgeschwindigkeiten, d.h. im technisch in erster Linie 
internanten Gebieb, gut verwendbar sein wird. Die Verwendung solcbr komtitutiver 
Gleichungen wird an einigen fur die Kunstatoff-industrie interemanten Problemen 
gezeigt. 
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